Elevated atmospheric ozone increases concentration of insecticidal Bacillus thuringiensis (Bt) Cry1Ac protein in Bt Brassica napus and reduces feeding of a Bt target herbivore on the non-transgenic parent.
نویسندگان
چکیده
Sustained cultivation of Bacillus thuringiensis (Bt) transgenic crops requires stable transgene expression under variable abiotic conditions. We studied the interactions of Bt toxin production and chronic ozone exposure in Bt cry1Ac-transgenic oilseed rape and found that the insect resistance trait is robust under ozone elevations. Bt Cry1Ac concentrations were higher in the leaves of Bt oilseed rape grown under elevated ozone compared to control treatment, measured either per leaf fresh weight or per total soluble protein of leaves. The mean relative growth rate of a Bt target herbivore, Plutella xylostella L. larvae was negative on Bt plants in all ozone treatments. On the non-transgenic plants, larval feeding damage was reduced under elevated ozone. Our results indicate the need for monitoring fluctuations in Bt toxin concentrations to reveal the potential of ozone exposure for altering dosing of Bt proteins to target and non-target herbivores in field environments experiencing increasing ozone pollution.
منابع مشابه
Effects of elevated carbon dioxide and ozone on volatile terpenoid emissions and multitrophic communication of transgenic insecticidal oilseed rape (Brassica napus).
Does transgenically incorporated insect resistance affect constitutive and herbivore-inducible terpenoid emissions and multitrophic communication under elevated atmospheric CO(2) or ozone (O(3))? This study aimed to clarify the possible interactions between allocation to direct defences (Bacillus thuringiensis (Bt) toxin production) and that to endogenous indirect defences under future climatic...
متن کاملGrowth, productivity, and competitiveness of introgressed weedy Brassica rapa hybrids selected for the presence of Bt cry1Ac and gfp transgenes.
Concerns exist that transgenic crop x weed hybrid populations will be more vigorous and competitive with crops compared with the parental weed species. Hydroponic, glasshouse, and field experiments were performed to evaluate the effects of introgression of Bacillus thuringiensis (Bt) cry1Ac and green fluorescent protein (GFP) transgenes on hybrid productivity and competitiveness in four experim...
متن کاملIncreased Frequency of Pink Bollworm Resistance to Bt Toxin Cry1Ac in China
Transgenic crops producing insecticidal proteins from Bacillus thuringiensis (Bt) kill some key insect pests, but evolution of resistance by pests can reduce their efficacy. The main approach for delaying pest adaptation to Bt crops uses non-Bt host plants as "refuges" to increase survival of susceptible pests. To delay evolution of pest resistance to transgenic cotton producing Bt toxin Cry1Ac...
متن کاملNovel Pink Bollworm Resistance to the Bt Toxin Cry 1Ac: Effects on Mating, Oviposition, Larval Development and Survival
Bt cotton plants are genetically engineered to produce insecticidal toxins from the Bacillus thuringiensis (Bt) Berliner (Bacillales: Bacillaceae) bacterium and target key lepidopteran pests. In all previous strains of pink bollworm, Pectinophora gossypiella (Saunders) (Lepidoptera: Gelechiidae) selected in the laboratory for resistance to insecticidal Cry1Ac toxin using an artificial diet cont...
متن کاملTransformation And Light Inducible Expression of cry1Ab Gene in Oilseed Rape (Brassica napus L.)
Rapeseed (Brassica napus L.) is the third most important oil crop in global productions. One of the major limiting factors for oilseed rape production is lepidopteran pests of the Brassicaceae family. Transgenic plants expressing Bacillus thuringiensis (Bt) genes are powerful tools in the integrated pest management of crop plants. In the present study, we used a synthetic Bt insecticidal crysta...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental pollution
دوره 157 1 شماره
صفحات -
تاریخ انتشار 2009